CHALLENGES IN THE DESIGN AND MANUFACTURING OF LARGE WIND TURBINE BLADES

Pim de Laat

Specialist in development of advanced composite products
CONTENTS

» COMPANY PROFILE

» BRIDGING DESIGN & MANUFACTURING

» CHALLENGES IN DESIGN
 » BLADE MASS
 » BLADE STABILITY/BUCKLING
 » MATERIALS

» CHALLENGES IN MANUFACTURING
 » PRACTICAL CHALLENGES
 » TECHNOLOGY
 » QUALITY

» SOLUTIONS

» SUMMARY

» QUESTIONS
PONTIS ENGINEERING: INTRODUCTION

» Founded in 2007

» 25 Specialists in Composite Engineering Six Sigma trained

» Offices in Netherlands (Amsterdam), USA (Boston, Ma) and Asia (Beijing)

» Global customer base incl 7 stock market listed companies.

» Pontis focusses globally on growing markets for innovative composite solutions.

» Expertise in wind:

 • Blades ranging from 6 to 89 meter
 • 6+ offshore blades built
 • More transfers done
BRIDGING DESIGN & MANUFACTURING

Design Requirements
- Lowest loads (Lowest weight)
- Smooth blade
- Accurate profile tolerances
- Slender blade design

Manufacturing Requirements
- Fast production
- Lowest cost
- Six sigma quality, no rejects
- Robust and simple process
DESIGN CHALLENGES

DESIGN OF BIG BLADES LEADS TO MULTIPLE CHALLENGES:

CONFLICTING REQUIREMENTS:

- Aerodynamics
- Blade stiffness
- Blade mass -> Loads
- Blade stability (e.g. TE buckling)
- Logistics
BLADE MASS

KEEPING THE MASS AT AN ACCEPTABLE LEVEL

» What is this level?

» Balance between mass, loads, costs and aerodynamics

POWER IS LENGTH^2 (SWEPT AREA)

MASS IS LENGTH^~2.6*

DUE TO THIS, WE ARE FORCED TO CONSIDER NEW TECHNOLOGY/OPTIONS

» Superior material selection

» Adapt loads to structure e.g. 3rd webs

» Root connection technology

*depends on blade family.
BLADE STABILITY/BUCKLING

NEW BLADE DESIGN DRIVERS

- Higher Loads
- Larger panel spans --> TE buckling
- Thinner Spar-Caps* --> Spar cap buckling

* use of different materials
MATERIALS

MATERIAL PROPERTIES

» mech. prop. no longer sufficient -> requirement for **higher** material properties
 E-glass → HM Glass → Carbon

» Polyester --> Epoxy --> PU and MMA?

MATERIAL PROCESSING

» Prepreg, Infusion, Pultrusion and root connection

» Location, logistics experience (skill set) HSE etc.
CONTENTS

» COMPANY PROFILE

» BRIDGING DESIGN & MANUFACTURING

» CHALLENGES IN DESIGN
 » BLADE MASS
 » BLADE STABILITY/BUCKLING
 » MATERIALS

» CHALLENGES IN MANUFACTURING
 » MANUFACTURING GENERAL
 » PRACTICAL CHALLENGES
 » TECHNOLOGY
 » QUALITY

» SOLUTIONS

» SUMMARY

» QUESTIONS
MANUFACTURING GENERAL

“Typical” mould cycle time for serial production rotor blade

» Focus Material lay-up.
» Full automation still too expensive
» Average ROI 3 – 5 yrs
» Need for more flexible dedicated solutions
» Manufacturing of smaller parts may increase the supply chain.
PRACTICAL CHALLENGES

» DIMENSIONS (MAX CHORD) BECOME EXCEPTIONALLY LARGE

» TE THICKNESS, TOLERANCES STILL BASED ON 45M BLADE

» BONDING PASTE POT LIFE APPLICATION TIME

» MANAGING OVERALL MFG PROCESS RANGING FROM LOGISTICS TO DOWNTIME
TECHNOLOGY

» PRODUCTION STATUS COMMUNICATION INCREASINGLY CRITICAL FOR LARGER BLADES (JIT)

» LOADING MATERIALS, MASS INCREASE LENGTH \(\sim 2.6^* \) \rightarrow \) INCREASE LAY-UP TIME POTENTIAL \(\sim 2.6^* \)

» BLADE INFUSION, INCREASING COMPLEXITY

» COMPONENT HANDLING, TOOLING, PARTS

*depends on blade family.
QUALITY

» COST OF DEVIATIONS GROW EXPONENTIAL WITH LENGTH OF THE BLADE (MATERIAL AFFECTED)
» CONSISTENT QUALITY (PROCESS STABILITY/CAP.
» CONTROL/PROCESS DRIVEN QUALITY ISSUES
» WHAT IS ACCEPTABLE?
CONTENTS

» COMPANY PROFILE

» BRIDGING DESIGN & MANUFACTURING

» CHALLENGES IN DESIGN
 » BLADE MASS
 » BLADE STABILITY/BUCKLING
 » MATERIALS

» CHALLENGES IN MANUFACTURING
 » PRACTICAL CHALLENGES
 » TECHNOLOGY
 » QUALITY

» SOLUTIONS

» SUMMARY

» QUESTIONS
TREND TO CONSIDER MODULAR BLADE CONCEPTS AS WELL AS BLADE EXTENSIONS

IN GENERAL ALL CONNECTIONS ADD MASS, BUT COULD BE A GAME CHANGER WHEN THE FOLLOWING IS CONSIDERED:

» Logistics
» Increase supply chain
» Ease of repair
» Accuracy
» Blade family extension
PONTIS PATENT APPLICATION

- Damage tolerant edge.
- Low modulus TE that can not buckle.
- Move the load carrying material inwards, however overall change in mass is neutral when increased stability is considered.
SOLUTIONS: MATERIAL LAY-UP

Preforms
- **Manufacturing Benefit**
 - Reduce in-mould cycle time
 - More consistent high quality product
- **Design Impact**
 - More time spent optimizing laminate layout for preforming purposes.
 - Additional moulds

Prefabs
- **Manufacturing Benefit**
 - Reduce in-mould cycle time
 - More consistent high quality product
- **Design Impact**
 - Neutral

Ready for Automation
- **Manufacturing Benefit**
 - Less man hours
 - Quicker cycle time
- **Design Impact**
 - Less intricate parts that can be made by machine

35% inmould cycle time reduction achieved.

PONTIS ENGINEERING

CHALLENGES IN THE DESIGN AND MANUFACTURING OF LARGE WIND TURBINE BLADES NOVEMBER 2016
SOLUTIONS: PROCESS AUTOMIZATION

ADVANCE KITTING OF CONSUMABLES

» Sensing technology (in mould??)
» Improved resin quality

AUTOMATION INFUSION

CURE OPTIMIZATION THRU SENSING

» Insulation optimization
» Automated cure cycle thru sensing

Photo: Hedrich
SOLUTIONS: CONTINUOUS IMPROVEMENT

GOAL TO CONSTANTLY IMPROVE MFG PROCESS;

» Time,

» Quality,

» Costs

» How:
- Standardization of process,
- Kaizen events (small task groups)
- Involvement of personal
- 5S --> lean journey
SUMMARY

» CONTRADICTION BETWEEN DESIGN AND MANUFACTURING INEVITABLE

» EXPONENTIAL MASS INCREASE WILL REQUIRE SUPERIOR MATERIALS AND BLADE ARCHITECTURE

» DESIGN CHALLENGES ON BLADE STABILITY/BUCKLING

» INCREASED MANUFACTURING CHALLENGES FOR BIG BLADES

» MANAGE BLADE QUALITY --> SIX SIGMA

» ADAPT /TAILOR PROCESSES TO SPECIFIC PRODUCT DEMANDS

» TREND TOWARDS OPTIMIZATION PROGRAMS
QUESTIONS?

THANK YOU

PJT@pontis-engineering.com
www.pontis-engineering.com