Individualized mass production of tailored thermoplastic composite blanks

Fraunhofer Institute for Production Technology IPT
Department for Fiber-Reinforced Plastics and Laser System Technology

Prof. Dr.-Ing. Christian Brecher
Dr.-Ing. Michael Emonts
Dipl.-Ing. Dipl.-Wirt.Ing. Henning Janssen

Composite 4.0 at RWTH Aachen University
Composite Europe, Stuttgart, 23rd September 2015
Agenda

1. Introduction

2. Manufacturing of tailored thermoplastic composite blanks

3. Possible applications and summary
Agenda

1. Introduction

2. Manufacturing of tailored thermoplastic composite blanks

3. Possible applications and summary
Introduction of Fraunhofer IPT
Production Technology in Aachen

Founded in 1870
- 38,000 students, 5,750 graduates
- 9 faculties, 260 institutes
- 4,500 researchers, 496 professors
- € 788 million Budget
 (thereof € 315 million external funding)

Faculty of Mechanical Engineering
- 10,980 students, 1980 new immatriculations
- 863 graduates, 155 professors
- 1,050 researchers, 61 professors
- € 272 million budget,
 thereof € 77 million external funding via Fraunhofer Institutes and others

Focus Production Technology
- Laboratory for Machine Tools and Production Engineering
 total budget € 49 million
 1200 employees*
- Fraunhofer Institute for Production Technology IPT
 *) thereof ca. 50% students

© WZL/Fraunhofer IPT
Introduction of Fraunhofer IPT
Lightweight Production Technology – Technological Competences

Technologies & Cross Section Processes

- Handling
- Tooling Technology
- Aluminum/Steel-Welding
- Cutting
- Pull-Winding Pulltrusion
- Fibre- & Tapeplacement

Technology Management
Risk Management & Life-Cycle-Assessment
Quality Management und Production Metrology
CAx-System Integration

© WZL/Fraunhofer IPT
Advantages of unidirectional fibers
Advantages due to the use of unidirectional non woven fiber-reinforcement

Short fibers
- Length: 0.1 mm – 1 mm
- Fiber type: Short fibers

Long fibers
- Length: 1 mm – 50 mm
- Fiber type: Long fibers

Continuous Fibers*
(Endless filaments)

Woven Fabric
Non-woven Fabric

Critical fiber kinking
Critical effective fiber

Properties of fiber-reinforced plastic components depend on:
- Fiber and matrix materials
- Orientation of the fibers
- Fiber volume content

Basic rules for component design:
- High fiber volume content
- Fibers orientated in direction of the loads

Fully consolidated unidirectional (UD) layers

Stacking Manufacturing Process

schematic real

Increased performance of unidirectional fiber-reinforced compared to woven fabric reinforced components:
- Young’s modulus: + 18,4%
- Strength: + 38,6%
- Weight: - 50%
- Scrap rate: - 50% up to - 75%
- Component costs: - 30%

*Length only limited by component dimensions

© WZL/Fraunhofer IPT
Agenda

1. Introduction
2. Manufacturing of tailored thermoplastic composite blanks
3. Possible applications and summary
State of the art
Manufacturing of thermoplastic composite blanks

Continuous production
- Double belt press
 - Impregnation of textile fabrics with polymer matrix
- High volume production
- Limited flexibility
 - Constant blank thickness
 - Fixed fiber orientation, e.g. [0°/90°]

Tape placement
- Laser assisted in-situ consolidation of UD-tapes
- Limited productivity (robot based systems)
- High flexibility
 - Selective reinforcement possible
 - Unlimited fibre orientations possible [-90° 90 °]
 - Laser radiation allows for swift process control

Tailored thermoplastic composite blanks
- In-situ consolidation of unidirectional tapes using IR
- High volume production
 - Fixed tape laying head with compression belt system
 - Moving mould / rotating nc-table
- High flexibility
 - Selective reinforcement and unlimited fibre orientations possible

Sources: Hymmen, Bond Laminates, Fraunhofer IPT
Manufacturing of tailored thermoplastic composite blanks
Novel IR-based tape placement system

Process description
- Placement of unidirectional tapes on a rotary table
- In-situ consolidation using an infrared heater in combination with a consolidation roller
- Waste minimization using a “Cut and Add on the Fly” process
- Free choice of the direction of fibers enables load optimization

System properties
- Mold diameter: 1.2 m
- Max. tape width: 100 mm
 - Currently: 3 x 25 mm
- Process speeds up to 1 m/s
 - Currently: 200 mm/s for PA6/CF
High volume production of thermoplastic composite blanks
Tape placement with \textit{Cut on the Fly} and in-situ consolidation

\begin{itemize}
 \item Cutting system
 \begin{itemize}
 \item Pneumatic actuated knife
 \item Fast acting pneumatic valves (2 ms)
 \item Cutting time: 16 ms
 \end{itemize}
 \item \textit{Cut on the fly process}
 \begin{itemize}
 \item Cutting without stopping the tape
 \begin{itemize}
 \item Waste optimization
 \end{itemize}
 \item Achieved tolerances in test rig
 \begin{itemize}
 \item 44 mm/s tape speed: 0.8 mm
 \item 238 mm/s tape speed: 1.3 mm
 \end{itemize}
 \item Achieved tolerances during blank production:
 \begin{itemize}
 \item Ca. 1 mm between two layers
 \item Ca. 2.2 mm over blank thickness
 \end{itemize}
 \end{itemize}
 \item Main challenge
 \begin{itemize}
 \item Achieving good consolidation close to the edge of composite blank
 \end{itemize}
\end{itemize}

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
Tape feed & 400 ms & 400 ms \\
\hline
Tape speed: & 44 mm/s & 238 mm/s \\
\hline
Tape length: & 95 mm & 18 mm \\
\hline
Number of samples n & 20 & 8 \\
\hline
Mean tolerances & +0.44 mm & +1.5 mm \\
\hline
Std. & 0.23 mm & 0.43 mm \\
\hline
Min. tolerance & 0.1 mm & 0.6 mm \\
\hline
Max. tolerances & 0.9 mm & 1.9 mm \\
\hline
Tolerance zone & 0.8 mm & 1.3 mm \\
\hline
\end{tabular}
\end{table}
High volume production of thermoplastic composite blanks
IR assisted tape laying with Cut and Add on the Fly and in-situ consolidation

Conventional Process
- Process speed: 150 mm/s
- Good consolidation achieved over continuous tape placement process

Cut and Add on the Fly
- Process speed: 150 mm/s
- Accurate cut on the fly
- Good consolidation achieved even close to the cut edge
Agenda

1. Introduction

2. Manufacturing of tailored thermoplastic composite blanks

3. Possible applications and summary
High volume production of thermoplastic composite blanks

Process chain for high volume production of thermoplastic composite products

- High productivity
- High flexibility
- No post consolidation necessary
- High scalability
 - Multiple number of tapes possible
 - General principle allows to lay up and consolidate a 500 x 500 mm layer within 2 seconds
High volume production of tailored thermoplastic composite blanks
Process chain for high volume production of thermoplastic composite products

Integrated process chain for resource efficient manufacturing of thermoplastic composite structures

- Automated production of tailored thermoplastic composite blanks using UD-Tapes
 - Waste optimization
 - Load optimization
- Subsequent multifunctional thermoforming
 - Integration of inserts during forming
- On-line process monitoring
 - Air-coupled ultrasonic measurement
 - 3D-scanning using adaptive projection
- Adaptive gripper systems for handling of molten UD-composites
Summary
High volume production of tape-based thermoplastic composite blanks

- Combination of the flexibility of tape placement with productivity of double belt systems
- IR-based system reduces investment costs compared to laser-based machines
- Process results for PA6/CF:
 - Speed of 200 mm/s
 - One layer in < 1 min (500x500 mm)
- Upscaling possible

Load optimized fiber orientation
Thermoformed tape based shell structure
Fraunhofer Institute for Production Technology IPT
Fiber-reinforced Plastics and Laser System Technology
Steinbachstrasse 17, 52074 Aachen

Dr.-Ing. Michael Emonts
Head of Department
Phone +49 241/ 8904-150
E-Mail michael.emonts@ipt.fraunhofer.de

Dipl.-Ing. Dipl.-Wirt.Ing. Henning Janssen
Group Manager Fiber-Reinforced Plastics
Phone +49 241/ 8904-261
E-Mail henning.janssen@ipt.fraunhofer.de

Visit us at our Fraunhofer booth at
Hall 7 – Booth B20